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A B S T R A C T

Distributed generation, with respect to its ability in utilizing the alternative resources of energy, provides a
promising future for power generation in electric networks. Distributed generators contribution to power
systems include improvement in energy efficiency and power quality to reliability and security. These benefits
are only achievable with optimal allocation of distributed resources that considers the objective function,
constraints, and employs suitable optimization algorithm. In this paper, a comprehensive review on the optimal
allocation of distributed generators was carried out for different objectives, constraints, and algorithms. Current
review highlights how the methods and algorithms for optimal distributed generation allocation play an
important role in improving the accuracy and efficiency of the results.

1. Introduction

Unlike the traditional centralized generation, distributed genera-
tion refers to a method in which a part of the electric power is
generated and delivered to customers with small generation units
placed close to the end users. The distributed generation can also be
addressed as dispersed generation, embedded generation, or decen-
tralized generation. Distributed generation covers a wide range of
locally installed power generation units which can be of both renewable
and conventional types. Nowadays, with respect to the technical
developments, enormous benefits can be achieved from Distributed
Generators (DGs) in economical, technical, and environmental fields
[1–3]. Those advantages could be earned by optimal selection, sizing,
and placement of DGs in power systems.

There are technical and environmental restrictions in the conven-
tional power plants’ expansion. Moreover, unsecure fossil fuel market
has led the electricity market towards new energy resources. In this
way, there are a number of incentives for encouraging network
planners to use combined heat power (CHP) resources in distribution
networks. Some of the issues which can be addressed by DG integration
in distributed networks are: power losses, voltage control, reliability,
stability, and fault level [3–11]. Since the DG installation in power
networks changes the network characteristics and the nature of the
electricity market [12,13], proper legislative regulations for the elec-
tricity sector are being introduced at the same time. A comprehensive

review on above matters, including the distributed power generation
resources, regulation, and integration arrangement, has been carried
out in Ref. [14].

Distributed Generation Allocation (DGA) can also include
Distributed Generation Planning (DGP). Since the objectives, con-
straints, and optimization approaches are common in either DGA or
DGP, most of the studies which have been reviewed in this article
focused on distributed generation allocation as well as planning.
According to the selected objectives and the operation constraints,
the utilized method in DGA can be categorized with respect to their
approaches for optimization such as normal search methods, intelligent
methods, or fuzzy set based methods. An extensive review on the
technical aspects of optimal distributed generation planning was done
in Ref. [15]. In current study, optimal DG allocation has been reviewed
and presented with focus on mathematical models and employed
solutions. A brief review was also carried out on the related studies
with respect to their objectives and constraints as follows:

Single or multi-objective functions are considered to maximize the
benefits of DG due to the considered constraints. Normally, the real
power loss [16–37] and the voltage profile [36–47] are the base
objectives. Some other objectives may accompany this base objective
such as reactive power minimization [48], DG capacity maximization
[49–61], or economy oriented objectives [62–75]. Other than the
above, multi-objectives models including various type of objectives
[76–103] have also been implemented in DGA formulations. There are
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also studies on the influence of DG on supply system security and
reliability, which clarified that these parameters could be improved by
means of a proper DGA [104–110]. Technical issues of variable DGs
(e.g. wind turbines) derived from time varying nature [14] and
integrated in distribution networks using suitable DGA approaches
are also investigated in Refs. [25,50,88,111–115]. A wide range of
constraints has been selected for optimal DGA fitness functions of
either single or multi objectives. These constraints can be categorized
into two main classes: power systems conservation constraints and
utilities capacity limitations. However, other constraints including
power exchange between areas [17], voltage step [51], and short circuit
level and ratio (SCL & SCR) [52] are also discussed in the literatures.
The following sections discuss the objectives and constraints in DGA
studies and presents the methods and algorithms for optimal DGA.

2. Selected objectives for optimal DGA

Most of the DGA studies were done with the objective of real power
loss minimization. Besides that, the reactive power loss, voltage profile,
the current reduction in weak lines, spinning reserve power, and
network MVA capacity are also take in to account. Normally, the real
power loss is selected as the base objective index and other objectives
are used to form single or multi objective fitness functions for
optimization. The most common combinations are explained in the
following sub-sections and summarized in Fig. 1.

2.1. Power loss minimization

In this scheme, optimal location of DG units has been investigated
by minimizing active power loss in the lines through DGA

[16,17,33,41,42,116–121]. The formulation was done by assuming
that the summation of the total injected power on all nodes could
represent the network losses. The aforementioned formula for power
losses has been extended according to the second order technique in
Refs. [16] and [17] based on the Newton's method and genetic
algorithm, respectively. In addition, in Ref. [17], the objective function
has been expressed for each load level by total cost of the losses for that
specific load level. Furthermore, the loadability has been improved by
optimal allocation of DG units and by minimizing the total reactive
power losses in Ref. [18]. In another study, the total line losses has
been minimized to investigate the impact of DG on voltage stability and
power transfer capacity of distribution network [19]. It has been
understood that due to the injection of the active power, overall impact
of DG installation is positive. Later on, the power loss has been
minimized by focusing on the transmission losses to determine the
installation bus and size of a type-3 DG (induction generator empow-
ered by wind turbine) in Ref. [36]. On the other hand, the authors in
Ref. [20], have expressed the total power loss as a function of the
injected current to the network branches.

The majority of researches only focused on total real losses in power
systems (exact losses) [21–26], while, the total energy loss and energy
loss for 24 h are chosen to minimize the power losses in Refs. [27] and
[28], respectively. Moreover, the total power losses has been repre-
sented by the annual energy losses in the number of studies [29–31].
The annual energy loss is minimized by optimal DGA in Ref. [29] using
biomass and wind DGs in combination or as a single source. They were
installed in both dispatchable and nondispatchable forms. Same
objective is minimized by optimal DGA of 3 wind turbines [30]. The
trend was followed by optimization of hybrid DG unit comprising solar,
wind, and non-renewable DG [31]. In addition, the power losses was

Fig. 1. Selected objectives in distributed generation allocation.
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treated as the daily energy loss and minimized using a mathematical
method [32].

However, line losses is one of the most important characteristics of
network performance, but it is not comprehensive enough to be
selected as a singular objective value to establish the objective function.

2.2. Voltage profile improvement

Among the researchers which studied optimal DGA, some purely
focused on voltage profile [38,39] or voltage stability [40] improvement
as the optimization objective, while most of them considered loss
reduction along with the voltage profile improvement [36,37,41–
47,49]. There also exist other articles that combined more objectives,
e.g. reliability, stability, or nodal pricing for optimal DGA
[84,104,117,122], which are discussed in the multi-objective sub-
section.

Interestingly, the voltage profile has been optimized by maximizing
the DG penetration level in Ref. [39]. It has been improved through the
bus selection by differential evolution (DE) on standard 6-bus and 30-
bus test systems, considering the sensitivities to voltage incremental
(dV dP/ ) and line flow constraints. In addition, the DGs' optimal
allocation using genetic algorithm in a portion of Tehran distribution
grid is reported in Ref. [44]. They concentrated on reducing the power
losses and improving the voltage profile, while similar objectives have
been handled in Ref. [45] by modified artificial bee algorithm for the
standard 33 bus radial distribution system. Fuzzy logic has been
employed in Ref. [46] to improve above objectives with a new
developed analytical method for size calculation. The proposed method
was applied on a three radial networks i.e. 12, 33, 69 bus networks.
Similar combination of objectives were selected for optimal placement
and sizing of DG units using the genetic algorithm in Ref. [47].

2.3. Objectives with financial concerns

2.3.1. DG efficiency and energy harvest maximization
In most of the studies on DG capacity and efficiency, it has been

assumed that one generator is installed on each bus. This objective has
been subjected to the constraints and being selected for the DG optimal
allocation in a number of studies [49–54]. Likewise, the objective has
been optimized by considering the DGs as negative loads in Ref. [55].
Simultaneously, DG capacities have been optimally maximized by
modeling them as the power sources with negative cost and minimizing
the imported or exported energy in Refs. [56,57]. Later on, the real
load curtailment and supplied power by grid have been minimized to
optimize the DG size and capacity in Ref. [58]. In addition, the
penetration level, as a key criterion for energy harvest, has been
maximized to achieve the optimal allocation of DGs in Ref. [59], while
the same objective was handled by minimizing the cost of power per
kW and the cost for capacity per kWh in Ref. [60]. Maximum energy
harvest per Euro of investments has been selected as an objective in
Ref. [61]. The authors also take into account the maximum benefits
from the existing energy resources and assets.

Similar to line losses, DG capacity maximization cannot be a single
objective for optimal allocation of distributed generation units.
Nevertheless, it is good to use DGs with their maximum capacity and
at high efficient point, but they need to be accompanied by other
objectives.

2.3.2. Cost minimization and profit maximization
The following objectives on electricity generation cost have been

studied in the literatures: DG construction, operation, and mainte-
nance costs [42,67–69]. In Ref. [67], the total investment was modeled
with respect to the formulation of supply chain. They minimized
aforementioned three cost objectives concurrently for different scenar-
ios. The assumed operational cost comprised of: additional power
purchase and loss compensation service. They have concluded that the

electricity demand growth can be addressed under three options by the
local network management corporations: 1- Purchasing the extra
required electricity from the main network power plant and injecting
it into the distribution network through the network junctions. 2-
Buying the required power from the already existed local power
producers and delivering it to their own distribution network. 3-
Installing DGs in response to distribution network demand rise without
constructing any new transmission or distribution lines. Afterwards,
another combination of multi cost objectives has been employed in Ref.
[68], while in most of the studies the operational costs are studied in
detail, this research looked in to DG integration benefits in a different
way. They have optimized the DGA by focusing on the reliability cost,
deferred energy cost, and emission cost. The minimum and maximum
functions have been optimized simultaneously but separately, and the
results have been selected based on Pareto front or non-dominant
solution sets. Additionally, authors have considered the solar farm
costs as well and they have minimized conventional generator, solar
farm, and gas emission cost along with the above base cost objectives
[69].

There are some studies which have combined the income besides
the cost objectives [70–72]. In this category, the objective function in
Refs. [70,71] includes maximizing the profits for DG owners and
minimizing the payments for Distribution Corporation (DISCO). In
addition, Ameli and Bahrami et al. [71] have added a big value penalty
term to the objective function in case of constraints violation. In
another study, the net percent value of investor's profit has been
maximized as the revenue and at the same time, the integration cost,
composed of equipment cost, transportation cost, land cost, and labor
cost has been minimized along with operation and maintenance cost
[72]. Subsequently, the DG profit has been represented by maximum
saving in system upgrade investments in Ref. [73], while the objective
function was formed by the cost of annual energy loss, and the cost of
interruption. Moreover, the financial objectives have been combined
and treated as an index in a couple of studies [74,75]. In this regard,
the ECOST reliability index (expected outage cost of the system as a
whole) which was developed by Chowdhury has been implemented to
optimize the location of DGs in Ref. [74]. Furthermore, the goodness
factor of DG units has been considered in Ref. [75] which is formed by
computing the DG units' contribution to the losses of the distribution
system. The objective function has been built for DISCO owned DGs
and investor owned DGs to minimize costs with respect to the DISCO
owned DGs. The objective function needs to be readjusted when the
investors own the DG units instead of the utility. However, the power of
those generation units is absorbed by DISCO, but they do not include
any dispatch tuning procedure and the modifications are only applied
on utility owned DGs. In such case, the expressed formula for objective
function was changed by replacing the operational costs of DGs that are
owned by DISCO, with the cost of power purchased from the investor
owned DG units. With respect to the fact that the described value is
constant, it does not have any impact on optimization and could be
neglected during cost minimization.

Normally, cost related objectives are in contrast with technical
objectives, and collecting them in the form of a single value objective
function is very difficult, even impossible. With respect to this fact, a
suitable set of objectives can be composed as multi-objective functions.
The combination of the performance related financial and technical
objectives are elaborated in the next section.

2.4. Multi objective optimization

As discussed above, several single or combinatorial objectives have
been used to create DGA objective function (OF). The Multi Objective
(MO) scheme aims to accomplish a concession among the various
objectives of an optimal DGA. The multi-objective functions create a
better model of the real environment, which generally contains contra-
dicting objectives and enable planners to select the best solution from
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available solutions, according to their experiences and points of view.

2.4.1. Singular/consolidate multi-objective functions
The multi objectives have been optimized separately in some

studies. For instance, a multi-objective function with two separate
parameters including the network power loss and voltage regulation
have been treated by Pareto optimal front method in Refs. [76,77]. In
addition, the multi-objective function has been optimized by minimiz-
ing different independent functions in Ref. [78]. Similarly, in Ref. [79],
the objective function has been formulated using three different
objectives: energy loss cost, voltage profile, and power quality. Unlike
above, most of the studies consolidated multi objective values using
proper weight factors to form a single value objective function. In this
manner, daily energy loss and voltage profile have been normalized and
combined using weight factors to form the objective function in Ref.
[80]. Later, the daily energy loss has been replaced by the power loss
and merged with the Voltage Stability Margin (VSM) [81], or Voltage
Stability Factor (VSF) [82] to create the objective function. From this
category, three objectives including the active power loss, short circuit
current, and the bus voltage level have been considered as OF in Ref.
[83]. Later, Nayeripour and Mahboubi-Moghaddam et al. [84] sub-
stituted the short circuit current from above objective function formula
with the transient stability. It is worth mentioning that, the most
comprehensive study on the technical aspects of DG installation
advantages has been carried out in Ref. [85]. The authors have reduced
the voltage and frequency deviations through a multi-objective function
which comprised of: improvement in the voltage profile, increase in the
spinning reserve, reduction in the power flow, and reduction in the line
loss. At the same time, Sutthibun and Bhasaputra [86] have concen-
trated on minimizing the real power loss and the gas emission, while
improving the severity index which represent the contingency of power
system regarding the power generation and balance constraints. Again,
the multi-objective function has been formed by summing the weighted
objectives, where the weight factor values have been selected according
to the importance of their related terms in the objective function
calculation.

2.4.2. Index base multi-objective function
A range of technical indices has been employed to form multi-

objective performance index (MOI) and investigate the DG impact on
different parameters of the electric networks [87–91]. Different
numbers of objective indices have been combined using proper
weighting factors in each paper to carry out a single value index. For
instance, the objective function in Ref. [87] consists of the active and
reactive power loss indicesILP and ILQ, the voltage drop and regulation
indices,IVD and IVR, the conductor current capacityIC , and three phase
and single phase short circuit currentsISC3 and ISC1. In another study,
the multi-objective function was made up using the same objectives
except for the voltage regulation index IVR [88]. Moreover, the short
circuit indices were also removed during the composition of the
performance index in Ref. [89]. Other objective indices are also
combined with some of the above to create multi-objective functions.
In this regards, a set of objective indices including ILP, IVR, MVA
capacity improvement index IMVA, and the environmental impact
reduction index IEI have been combined to construct a single value
objective function in Ref. [90], while, only ILP and Voltage Stability
Margin (VSM) have been employed to form the objective function in
Ref. [91].

2.4.3. Multi-objective functions including financials
In addition to aforementioned technical parameters, there are also

plenty of studies that combined the financial objectives with technical
objectives, including power losses, injected reactive power, reliability,
and loading margin, to optimize the DG allocation. For instance,
concurrent cost and loss minimization have been selected to form the
objective function in Ref. [92]. At the same time, the sensitivity to line

loss and price variation for each node have been employed as the
operational and commercial criteria for optimal DG installation site
identification in Ref. [93]. In this study, a penalty objective function,
which is limited by network constraint violation, was created to
minimize the total curtailed load during a single step restoration after
a long time electricity interruption. Moreover, the objective function
has been constructed based on the amount of load that cannot be
supplied with respect to the violation of branch currents, violation of
bus voltage, and transformer load limit violation in a substation.
Afterwards, the network loss along with the capital, replacement,
start-up, and maintenance costs have been minimized in Ref. [94],
considering the renewable energy source uncertainties in a competitive
energy market. Earlier, a multi aspect financial objective including
DISCO investment, operating cost, payment for loss compensation, and
cost of unserved power have been exercised and minimized in Ref. [95].
In this research, the objective function has been composed by mini-
mizing the fuel cost for both DG and conventional sources together
with minimizing the network line losses. In another attempt, the
economic impacts of PV units in radial networks have been introduced
as the objective function in Ref. [96] by combining the voltage stability
and economic impact of PV integration, including profitability and loss
reduction. Simultaneously, the cost of total power generation and
losses together with total reactive power request has been minimized
by Golshan and Arefifar [97] using a combination objective function for
distribution generation planning which includes reactive sources,
distributed generation capacity, and also network configuration.

A combination of cost based objective and system reliability has
been employed in Refs. [98,99] for optimal DGA. While the objectives
have been comprised of minimizing the basic cost objectives along with
environmental penalty (emission for fossil fuel plant), and maximizing
the reliability in Ref. [98], while, only three main cost objectives have
been minimized in Ref. [99] by maximizing the benefits of an active
power demand reduction (from grid) and reliability improvement. The
maximization of the Loading Margin (LM) and DISCO profit along with
the minimization of energy loss cost and investment cost have been
chosen as the objectives in Ref. [100]. In further studies, an interesting
approach has been selected to form a multi-objective function which
consists of technical and economical factors [101]. In this study, the
objective function included voltage profile improvement and increase
in loading margin as technical factors. The cash inflow of DG, life cycle
cost, and power loss on feeder have been selected to represent the
economical aspect. In another study, four objectives which consist of
total line loss, main grid energy flow, DG installation cost, and gas
distribution investment (source for gas based DG) have been optimized
separately to obtain 4 dimensional Pareto optimal front (trade-off
front) [102]. Recently, a combination of constraint dissatisfaction,
costs, and environmental emissions have established the objective
function for optimal DGA [103].

In all researches, the multi-objective values have been selected for
composing the objective functions or making decision on the optimal
allocation using the Pareto Front method. However, only a portion of
them used the weight factors to create a single-value objective function
and the rest employed Pareto Front method which includes the
consequences of interference due to human decision in optimal
allocation procedure.

3. Constraints for optimal DGA

The constraints have been considered in a single or multi objective
function optimization to ensure that the operational or design condi-
tions are within the limits during the recognition of the best location
and size of DGs. A number of power system conservation constraints
and utilities capacity limitations have been considered by the research-
ers. The power balance, node voltage, line current, and power factor of
DG are the most common power systems conservation constraints,
while the short circuit current, capacity of intertie power, number of
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DGs, maximum power production of DG, and transformer capacity are
the more popular examples of utilities limitations constraints. Some of
the mentioned constraints are illustrated and categorized in Fig. 2 as
follows:

3.1. Active power: load-flow/generation

The total active losses and demand should be covered by total active
generation from traditional generators and all DG units. Such con-
straint is called Active Power Balance Limit (APBL) and has been
considered in most of DGA studies [18,24,26,30,33,37,39,40,43,56–
58,67,69–73,77,80,81,85,89–91,93–
95,97,100,102,103,116,119,120,123].

The Traditional Active Power Generation Limitations (TAPGL) have
been focused in a couple of studies. In Refs. [62,66,69,72,85], the
generated active power by traditional generation units is subjected to
the lower and upper active power generation limits, while in Ref. [75]
only the upper limit of the active power has been considered.

DGs' Active Power Generation Limitations (DGAPGL) has also been
taken into account in a number of researches. The lower and upper
restrictions for active generated power have been applied in Refs.
[18,22,25,37,42,71,72,75,76,81,84,85,93,95,104,115,123,124] while,
only the upper limit has been taken into account in Refs.
[43,67,93,102].

No significant limitation has been applied to the total supplied load
through DGs, however, in Refs. [48,93], the authors have restricted DG
maximum installed capacity to 20% and 30% of the substation capacity,
respectively.

3.2. Reactive power: load-flow/generation

The total reactive losses and demand should be covered by total
reactive generation from traditional generators and all DG units. This
constraint is named as Reactive Power Balance Limit (RPBL) and has
been examined almost in all studies [18,24,26,30,37,39,40,43,56–

58,67,69–73,77,81,89,90,93–95,100,102,103,116,119,120,123].
The Traditional Reactive Power Generation Limitations (TRPGL) is

another constraint being contemplated in studies. The generated
reactive power of traditional generation units has been restricted to
the lower and upper reactive power generation limits [62,66,69,72],
while only the upper limit of reactive generated power has been applied
in Ref. [75].

The next constraint for reactive power generation is DG Reactive
Power Generation Limits (DGRPGL). In Refs.
[18,37,42,68,71,72,75,76,80,81,93,95,123], the reactive power of each
DG has been limited to both lower and upper limits, on the other hand,
only the upper limitation has been exercised in Refs. [43,67,102,125].

3.3. Voltage: profile/steps/angle

The Voltage Profile Limitations (VPLs) have been exercised in
majority of DGA studies. For instance, the constraints limited the bus
voltage to the voltage upper and lower limitations, for all buses
[18,24,26,28,29,32,37,38,40,42,43,58,59,67–71,73,76,78,80–
82,84,89,90,94–96,98,100,101,103,117,118,120,126]. On the other
hand, the maximum of 5% variation has been considered for the
voltage in Refs. [24,30,31,39,116,127] while, the variation limitation of
10% has been implemented in Ref. [119]. In a recently published study,
the voltage constraints have been applied through the penalty factor in
the OF whenever the bus voltages exceed the limitations [60].

In the case of a distributed generator outage, the voltage step
should be changed immediately. Voltage Step Limitations (VSLs) have
been discussed as the bus contingency voltage in Ref. [53]. In addition,
the study was done by a DG disconnection scenario in a security
constrained optimal power flow. This constraint has been expressed by
considering the bus voltage before DG disconnection, and the voltage
step and the contingency voltage at a bus after DG disconnection.

The Phase Angle Limitation (PAL) for the bus voltage has been
exerted in Refs. [93,120,123]. In these studies, the angle of bus voltage,
which is limited to its upper and lower bands, has been considered as

Fig. 2. Considered constraints in distributed generation allocation.
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the constraint.

3.4. Line: the thermal/loss constraints

The maximum capacity of a feeder is defined by considering lines
thermal and stability limitations. The Line Thermal Limitations (LTL)
constraint limits the feeder capacity in MVA into the maximum power
which can flow through the line. This limitation was very common in
optimal DGA studies [23–26,29–31,40,42,43,48,51,52,56–
58,61,62,65–68,70–72,75,80,81,84,88–
90,93,95,98,100,103,106,108,111,115,120,128].

In Ref. [48], the authors maximized the DG units' capacity by
focusing on the Total Line Loss Limitation (TLLL) with and without DG
units installation. According to this constraint, total line loss after DG
installation should not exceed the total line loss before DG installation.

3.5. Transformer: capacity/tap

The total power which is supplied through a substation transfor-
mer, has been limited to its maximum capacity by the Substation
Transformer Capacity Limitations (STCL) [52,56,57,61,67,93,95,-
103,120].

On the other hand, the tap position of the voltage transformers
(VTs) is limited to its upper and lower limitations. This restraint has
been called the Tap Position Limitation (TPL) and being integrated in
Refs. [97,124].

3.6. Short circuit: level/ratio

To ensure that the short circuit level for network with new
configuration after DG installation does not exceed the old system
short circuit protection level, a short circuit calculation has been
carried out with new configuration and checked against the Short
Circuit Level Limitation (SCLL) [48,52,56,57,61,83].

According to the definition, Short Circuit Ratio (SCR) is the ratio of
delivered active power to each bus from DG units in (MW), with respect
to the power factor, to the value of short circuit level on each bus.
Hence, a small enough SCR can limit the voltage dip transients. The
Short Circuit Ratio Limitation (SCRL) has been considered in Ref. [61].
Induction generator connection to network with high X R/ ratio may
lead to the voltage instability, if the short circuit ratio is not limited.
These limitations were explained in Refs. [129,130], and it has been
recommended to keep them limited to 10%.

3.7. Power: delivery/quality/power factor

The imported power through intertie power delivery link, must be
less than or equal to the Intertie Power Delivery Limitation (IPDL).
This constraint has been considered in Ref. [70], and the cost of the
delivered power through intertie is calculated by multiplying the
intertie power limit factor by the price of electricity in the market. In
another study, the power delivery has been limited to the maximum of
Bulk Electric System (BES) [91]. Moreover, the maximum allowable
power injection on each bus has been included as a constraint for
optimal DGA in Ref. [80].

The power quality limitation has been considered by restricting the
Total Harmonic Distortion (THD) to a maximum allowed level [31],
THD and Individual Harmonic Distortion (IHD) [59], or by including
the Loss of Load Probability (LOLP) [98]. In addition, the power
quality constraint has been reflected by taking the Total Demand
Distortion (TDD), THD, and the Harmonic Current limitations into
account in Ref. [117].

Due to assumptions, DGs with real power output and reactive
power output are supposed to operate in a specified constant power
factor. The Power Factor Limitation (PFL) has been integrated in Refs.
[24,56,57,65,66,68,72,119].

3.8. DG: number/size/penetration level

The number of DG units should not exceed the maximum number
of DGs. Such limitation is referred to as the Number of DG Limitation
(NDGL) which has been examined in Refs. [29,35,70,75]. Moreover,
the DG size limitation has been integrated in Refs.
[24,30,90,94,103,119].

The maximum penetration of hybrid DG units in system [31], the
maximum DG penetration on each bus [40], and the maximum
allowable penetration of wind turbine in whole network and on each
bus [30,81], have been investigated. The maximum penetration level of
30% and 150% for DG units have been considered in Ref. [116] and
[96,101], respectively. In addition, a combination of the number of
DGs and penetration level for wind turbines due to the system load
level have been integrated into the set of constraints in Ref. [26]. While,
the maximum capacity of DG has been subjected to be less than 40% of
load demand in Ref. [100], the maximum of 60% of substation rating
for the DG penetration level along with the number of DGs have been
chosen in Ref. [73].

Some of the above mentioned constraints are in contrast with the
objective values which can be employed in the objective function
composition. With respect to this matter and the proposed methods
for objective function calculation, commonly, in most of the studies
only the power system conservation constraints along with a couple of
utilities capacity limitations are being exercised for optimal DGA.

4. Employed optimization methods and algorithms

The employed objective and constraints in optimal distributed
generation allocation have been discussed in the last two sections. In
this section, the methods and techniques which are commonly used for
the optimization problems are presented. The employed algorithms can
be divided into two major classes which are classic and artificial
intelligent algorithms. The classic algorithms cover both mathematical
based methods and the basic search approaches. Moreover, due to the
huge number of studies which have been done by evolutionary and
nature inspired techniques, the artificial intelligent based search
methods are sub-categorized into three more sections including: search
methods inspired by physic and society phenomena, natural inspired
algorithms, and hybrid search approaches. All of those categories are
illustrated in Fig. 3.

4.1. Classic approaches

Classical approaches are mostly based on the mathematical solution
of the problem. These methods are employed for DGA in a couple of
studies. In this review, those algorithms are classified under the
following subheadings:

4.1.1. Analytical or deterministic algorithms
The Analytical Algorithms (AA) for identifying the optimal DG

installation size and site in the distribution network have done by using
different approaches in reported studies [20–22,29,54,96]. In Refs.
[54], the authors have minimized the objective function for optimal bus
recognition by the following steps: the admittance matrix is calculated
before DG installation, then recalculated after implementing DG units
along with impedance and equivalent resistance matrices. In order to
find the optimal bus, the objective function is evaluated for DG
connection to different buses. If all bus voltages are in the voltage
constraint, then the DG connection bus is the optimal bus for DG
installation. Else, if some of those voltages are not in range, then the
DG needs to be moved around the connecting bus to meet the voltage
limitation. Otherwise, if none of the identified buses can fulfill the
voltage rule, the DG size should be changed and the procedure repeats
with a new DG size. Acharya and Mahat et al. [21] used loss
approximation instead of accurate load flow calculation. By using this
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method, the number of load flow analysis decreased to two times only,
first one is done in the base case and the second is accomplished at the
end of the optimization to achieve the final results. The DG optimal size
on each bus is obtained when the losses reduction is stabilized while
DG power injection increase. Then, loss is approximated by installing a
DG of optimal sizing on that bus and the minimum value for the
approximated value of losses identifies the optimal connection bus.
Finally, accurate loss is determined by load flow calculation for the
selected size and site of DG. A mathematical formula has been
developed in Ref. [32] to determine the best node in a feeder to
connect PV, such that power from PV can flow downstream and
upstream to provide power to loads but does not reach the substation.
The size of PV is then determined by the number of nodes which are
supplied. A value based analytic method has been employed in Ref.
[74] for optimization of DG location to improve the ECOST reliability
index.

One of the most popular methods for distribution load flow analysis
that uses equivalent current injection have been employed in Ref. [20].
In this approach, the matrices of Branch-Current to Bus-Voltage
(BCBV) and Bus-Injection to Branch-Current (BIBC) are implemented
in calculations which are formed according to distribution network
topology. Thus, only one load flow is required for the base case. The
changes in total power losses resulted from active power injection to
each bus is equated to zero, to identify the optimum size of DG. Then,
DG with the optimal size is installed on buses and the bus with the
minimum power losses is determined as the potential optimal location.
The recognized bus will be selected as installation site if bus voltages
follow the voltage limitation rules, otherwise, the next bus with
minimum losses will be replaced and the voltages will be rechecked.

Duong Quoc and Mithulananthan et al. [22] have improved the
proposed method of Acharya and Mahat et al. [21] by developing a
comprehensive formulation to recognize the optimum location and size
of DGs. The active and reactive power delivery capabilities have been
considered for four most popular types of DGs with respect to their
terminal characteristics. These algorithms need to check every possible
combination as solution, thus, they are not applicable on large size
networks which have several buses and conditions for generation unit
installation. Moreover, a procedure for optimal DGA of PV units on
radial distribution systems has been offered in Ref. [96]. They have
simulated the 37 bus and 26 bus test networks aiming to improve the
voltage stability, reduce losses, and maximize the profitability by
proper siting and sizing of PV units. They have considered load
variation over a year and the result has shown improvement in voltage
profile and power loss reduction.

The analytical expressions have been proposed to identify the
optimal size and power factor of DG unit simultaneously for each
location to minimize the power losses [29]. Then, the expressions have
been adapted to place renewable DG units to minimize the annual
energy losses in a 69-bus distribution test system with a variable
demand and generation. In this study, the mathematical method which
analyzes the generation variation with demand changes (dP dL/ ) have
been utilized to find the best size and power factor for each location and
comparing different locations to find the best one. The results show
that the dispatchable units by themselves or in combination with
nondispatchable DGs have better performances than pure nondis-
patchable resources. In the proposed method, the constraints are not
included in the formula and only used as an indicator to stop iterations.
Nevertheless, in this method, the number of iterations can be bulky, if

Fig. 3. Optimization algorithms for distributed generation allocation.
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trials keep going. Another deterministic approach has been employed
in Ref. [43]. In this paper, firstly, the DG placement has been optimized
by the loss sensitivity index for all bus voltages (smallest dP dV/ ). Then,
the Lagrange function has been formulated for optimal sizing, and
Modified Primal-Dual Interior Point Algorithm (MPDIPA) has been
employed to speed up the optimization convergence.

In another attempt [102], a deterministic approach (DA), which has
been formulated as Quadratic Objective Quadratic Constraint (QOQC)
and can be solved mathematically, have been proposed. The drawbacks
of the previous studies, such as the difficulty to extend to a long term
planning, have been also discussed with respect to uncertain factors
like weather and load growth. Likewise, an algebraic approach which
can provide a quick estimation of a suitable location and minimum DG
rating for a single synchronous DG has been proposed in Ref. [38] to
satisfy the required minimum voltage level. In this study, a synchro-
nous DG (renewable or non-renewable) has been planned to support
network voltage only, especially when a practical long and loaded
feeder has been introduced. The loads were assumed to be uniformly
distributed and the optimal location has been determined based on the
distance (in km) from the first substation. A suitable location with a
minimum DG rating at a constant power factor is desired to ensure that
the required voltage level in the network is satisfied.

The maximized DG penetration level in a distribution system,
consisting of both three phases DG connection and single phase shunt
capacitor installation, has been inspected in Ref. [39] by an iterative
deterministic method. The location and size of both devices have been
considered as the controlled variables. Firstly, the Voltage Ranking
Index (VRI) has been developed to find the weakest buses for
interconnection, then a DG has been connected to the bus and
continued to increase its capacity by 1% as long as the voltage is still
in limitations. The highest possible value is the optimal size for the first
DG. Since the value is not zero, additional DG is utilized by the same
procedure. All steps have been applied for the optimization of single
phase shunt capacitor; the only difference is that the weakest bus is
selected from the single phase buses. In Ref. [27], a formula was
developed using mathematical analysis to determine the best node in a
feeder to connect PV to, such that power from PV can flow downstream
and upstream to provide power to loads but does not reach the
substation. The size of PV is then determined according to the number
of nodes that is supplied by PV to ensure the loss minimization. In Ref.
[72], a mathematical analysis along with Monte Carlo Simulation
(MCS) have been integrated for optimal DGA. More recently, an
analytical expressions have been employed to find the size and pf for
PV and Battery Energy Storage (BES) by solving the dIMO dP/ = 0 and
dIMO dpf/ = 0 equations [91]. A comparison among several index based
methods, comprising combined power loss sensitivity (for location),
index vector method, and the voltage sensitivity index for optimal
location and size of a single DG was provided in Ref. [41]. The
benchmarks include real and reactive power loss, as well as minimum
voltage in the system. The DG was operating at unity and 0.9 power
factors lagging, and the authors have concluded that the lagging power
factor gives larger optimal DG size and lower loss, as compared to unity
value.

A two-stage model for optimal allocation of a single DG has been
employed in Ref. [119]. Firstly, the DG location is optimized by
sensitivity test for each bus. Then, curve-fitted technique is used for
optimal sizing by plotting the power loss for several DG sizes with
different power factors. The optimal size is then found by x-intersect
and followed by running load flow to check the constraints. The
Optimal Location Index (OLI) has been proposed to select the optimal
location for DG [121]. In the suggested method, the Kalman filter has
been used to reduce the computational load of size optimization.

4.1.2. Linear Programming (LP)
Linear programming algorithms have been employed in Refs.

[52,61,85] to form an objective function by formulating linear equa-

tions and constraints. However, the LP method is only applicable on
linear equation and constraints, but it has the ability to handle large
number of various operational limitations for power system including
contingency constraints. In spite of the LP methods' huge contributions
to DGA, they became useless in the case of OPF calculations and are
not capable of finding the exact solution for system because of
inaccurate system loss evaluation.

4.1.3. Nonlinear Programming (NLP)
The first step to solve a nonlinear programming problem is

choosing the direction of search for an iterative procedure. This
direction for DGA can be determined by the first derivative of the
power system reduced gradient equations. Nonlinear programming has
been employed in many different ways. For instance in Ref. [131], a
first order method which is also referred to as Generalized Reduced
Gradient (GRG) has been utilized to solve OPF. In Ref. [61], nonlinear
programming has been employed in its second order form to solve the
second order partial derivative power flow equations by a sequential
quadratic programming together with Newton's method and the
constraints have also been applied using second order partial deriva-
tives (Hessian matrix). The amount of resources at the selected nodes
has been computed using the second order method to minimize the
objective function of system losses in Ref. [16]. As stated in Ref. [132],
NLP integration in large power systems faces two major difficulties:
Firstly, depending on the search procedure starting point, different
optimal points can be achieved because of the method nature which can
be trapped in local optimal point. Secondly, the convergence of this
method is guaranteed and it is not affected by starting point, but they
can be very slow because of its zig-zaging motion over the final
solution. Moreover, the minimization of DGs number in the system
as one of the objectives has been carried out by NLP [81]. A high
number of DGs would increase short circuit level and make it more
difficult to reconfigure protection coordination. The algorithm has also
resulted in the optimal location of DGs, which needs to be in the middle
of the feeder and not the end bus of the radial branches when a huge
number of DGs is installed. Fuzzification is employed to unify the scale
of different objective and combine them with weight factors to form the
objective function.

4.1.4. Mixed Integer Linear Programming (MILP)
Rider and López-Lezama et al. [70] have proposed a bi-level

approach for optimal location and contract pricing of distributed
generation in radial distribution systems mixed integer linear pro-
gramming. They have converted a two level optimization problem into
a single level optimization using duality theory. The paper looks at the
optimization problem from both perspectives of distribution company
and DG owners. For DG owners, the variables are contract price and
DG location, while for DISCO, it is the energy that they are going to buy
after running OPF. Using the duality theory, the owners’ desire is set as
the objective function while DISCO's perspectives are reflected in the
constraints.

4.1.5. Mixed Integer Nonlinear Programming (MINLP)
In MINLP method for DGA optimization, the integer part contains

the variables with 0 and 1 values representing the existence of DG units
on the buses. A mixed integer nonlinear programming method has
been utilized to formulate a comprehensive optimization objective
function for DG optimal siting and sizing in Refs. [67,93], and a
General Algebraic Modeling System (GAMS) with the use of Sparse
Nonlinear Optimizer (SNOPT) by integer decision variables containing
0 and 1 have been implemented in the model formulation [133].
However, the method has some improvements in comparison to the
NLP methods, but the difficulties for those methods still exist. The
most important objectives in this study were: i- Determination of best
installation area for DG according to operational and economical
aspects (the nodal price of real power and sensitivity index of power
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loss). ii- Finding the optimum location and number of DGs for
installing inside the selected zone with a MINLP algorithm. iii-
Calculating the demand variation impact.

In another attempt, a probabilistic planning method has been used
to determine the optimal shares of different hybrid renewable DG units
consist of wind, solar, and biomass modules [111]. The method is
subjected to minimize the annual energy losses within the constraints'
limitations. The MINLP has been applied to formulate the problem
respecting the renewable DG sources uncertainties and load profile
hourly variations. The Voltage Stability Margin (VSM) has been
improved and loading has been maximized by integrating DGs into
the power system. In this regards, the impact of location and size of
DGs on these two values have been studied in Ref. [40]. Most suitable
candidate buses for the optimal location of DG have been found by
voltage sensitivity indexes, then the sizes have been recognized by
MINLP. The load and generation variations have been considered using
IEEE-RTS as well as Beta and Weibull probability distribution func-
tions.

4.1.6. Dynamic Programming (DP)
Basic Dynamic Programming aims to solve the problems in which

the optimal decisions should be made sequentially. The method has
been introduced by Richard Bellman in the 1940s. The word dynamic
represents the time varying nature of a problem, which is solved by
optimal programming method. The method is considered as a pro-
gramming method as well as mathematical optimization. He refined his
proposed method from 1952 to 1956 by redefining the large decision
making problems in the form of inner smaller recursive optimization
problems [134–136]. The procedure of breaking the complicated
problem down into simpler nested ones may result in sub-problems
which share the decision spans and have dependent optimal result to
other sub-problems. It is where the recursive aspect of method helps
and does the optimization in sequential manner; this technique is
normally referred as optimal substructure.

The Dynamic Programming Optimization (DPO) has been utilized
in Ref. [99] to find the location and size of multiple DGs in the
distribution system. Both benefits and costs of installing and operating
DGs have been included in the objective function. The problem is
divided into stages, with the number of stages equal to the number of
candidate notes. The decision for a current situation takes into account
the information of previous behavior of system from the previous stage.
Backward procedure has been employed, in which the algorithm starts
from the last node in the system. It stops when all DGs have been
allocated for all nodes. Three load scenarios have been used, however,
no especial constraint has been considered as well as the variation of
generation which has not been covered. In Ref. [116], DP has been
employed to optimize the size of multiple DGs, in which the location
has been determined. The algorithm is based on three states of power
for each bus and the paths connecting these states among the given
buses. These paths have been evaluated using power flow utilizing the
Gauss Seidel method and the path which gives the minimum loss has
been chosen for the next step. DG penetration level limit is included in
the constraints. However, generation and loads are still assumed to
have fixed values.

4.2. Basic search methods

Basic search methods were the inspiring sources for various studies
on optimal DGA. Most highlighted studies using basic search methods
for DGA are being discussed under the following main categories:

4.2.1. Exhaustive Search (ES)
Exhaustive Search, which is also known as brute force, direct search

or generate and test, is a thorough test of target function with all
possible input values. For discrete problems such as what exist in DGA,
this method could be used. However, it is not an efficient solution

method, but the results are always reliable because of all possibility
checking [137]. A comparison between exhaustive search method and
genetic algorithm has also been accomplished in Ref. [138]. The
exhaustive search method could be considered as the simplest meta-
heuristic method. It can ensure that the most accurate solutions will be
found, if there is any. The main reason of proposing the exhaustive
search as an approach for an optimal generation positioning is its
simplicity and accuracy [139]. In Ref. [140], a multi-variable method
has been suggested for finding the optimal installation point and size of
distributed generation units by implementation of the exhaustive
search. The optimization has been applied on network total active
and reactive losses together with voltage variation. However, as the
candidates’ number raises, the possible solution number increases
rapidly. Therefore, the suggested algorithm is only applicable for small
number of candidates due to its costly computations. The direct search
has been used in Ref. [127] to optimize the location, size, and number
of DG units by focusing on voltage profile as a single objective value.

Afterwards, the ES has been employed for optimal placement of
1WM solar farm in a distribution network on the basis of daily power
consumption and production fluctuation in Ref. [28]. The study was
done on 30 bus network by placing the PV farm on all nodes one by one
and for each node, the power flow has been carried out for every hour
with respect to the PV farm generation and demand curves. If the
constraint of voltage failed at any hour, PV is moved to the next node
till the constraint is satisfied. The total power loss for 24 h is calculated
by summing all of the power losses, formulated using line parameters,
at each hour for the nodes which fulfill the voltage constraint. The node
with minimum power loss determined the optimal placement of PV
farm. Another study in this field investigated the clustering based
approach and a 2 stages exhaustive search to determine the optimal
location and size of the multiple DGs [80]. The first few buses with
similar Load Sensitivity Factor (LSF) and bus voltage were grouped
together to select a subset of candidate with high value of LSF and low
voltage for hybrid DG location comprising PV, CHP, and micro hydro
generators. Then, the internal stage uses exhaustive search to select the
best combination of DG sizes among all of the possible choices,
utilizing normal load flow. The variation of generation and load is
considered with one hour steps for a day. The optimization targets are:
to minimize daily energy loss and improve voltage profile and they have
ensured no basic constraints of power system were violated.
Furthermore, the steady state Voltage Stability Index (VSI) has been
examined to choose the location of DG unit in Ref. [117] (nodes with
minimum index), then Direct Search with load flow has been integrated
to find the optimal size. The step size of 0.1 MW has been selected as
DG power increment up to 2WM. For each step, 5000 samples of
radiation and temperature have been used to calculate the average loss.
Hernandez et al. [101] also handled a couple of contradicted economic-
al and technical objectives by employing a combination of direct search
and Pareto front method.

4.2.2. Optimal Power Flow (OPF)
The optimal power flow algorithm, which is another basic search

method, has been utilized for optimal DGA in many research studies
[30,51,53,55–57,62,65,66,75]. In Ref. [55], maximum DG capacity
and system available headroom have been identified by considering
voltage and thermal constraints through the implementation of optimal
power flow under "reverse load-ability" method. In Ref. [62], demand
bids have also been considered in addition to the generation bids in a
traditional optimal power flow approach to minimize cost. In this
method, Locational Marginal Price (LMP) is applied as Lagrangian
multiplier in OPF power balance equation. The primary nodal prices,
demand, and generation dispatch are calculated by OPF aiming for
social welfare maximization. Then, the DG locations are identified
using the achieved nodal prices, hence, by changing dispatch scenario
the demand is supplied at a lower price. Algarni and Bhattacharya [75]
have integrated GD units' goodness factor directly into the distribution
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system model. DG units' incremental contribution to power losses
(both active and reactive) has been implemented as Incremental Loss
Indices (ILI) in OPF framework. Besides, OPF has been employed to
allocate the generation capacity focusing on the power system tolerance
to the fault levels [56,57,66]. In similar manner, the work in Ref. [51],
has been done by integrating voltage step constraints in to the OPF
algorithm to identify the DG accommodation capacity of network. In
[53], the authors have used a one by one line outage contingency
solution in OPF to recognize the maximum generation under the
security limitations. Likewise, OPF approach has been implemented
to indicate the maximum capacity of a network, which is incorporating
with variable DGs [50]. Due to the huge load of iterative calculation in
this method, the method is normally applied on radial distribution
networks.

The DGA optimization problem was formulated by mixed integer
nonlinear programming (MINLP) under GAMS software environment
and solved by OPF in Ref. [30]. In this study, the authors have
proposed a probabilistic planning technique, in which a combination
of probabilistic generation and load model has been developed. The
optimal allocations of 3 wind turbines have been found on a rural
distribution system, giving minimum annual energy loss and ensuring
no violation in power system constraints. The wind speed probability is
modeled utilizing Rayleigh probability density function (pdf) and loads
variation is modeled by IEEE-RTS system.

4.2.3. Continuation Power Flow (CPF)
Analysis of power flow continuation and search for the bus with the

most sensitivity to voltage collapse has been done in Ref. [19] to
determine the optimal place for DG installation. The continuous power
flow algorithm is used for determination of maximum loading or most
sensitive bus to voltage collapse. Then, one DG with a specified capacity
is installed on the recognized bus as the most sensitive bus, then, the
power flow program is iteratively being executed till the satisfactory
estimation for objective function is achieved. In this algorithm, the size
of DG is not recognizable and only the location of installation is
identified.

4.2.4. Load Concentration (LC)
Lee and Park [33] were the first to implement the LC method for

optimal DGA on the IEEE 30 bus benchmark network. They have found
the optimal location by identifying load-concentration-buses in the
network and the number of DGs, which were equal to the number of
these buses (each bus represents one load area in the system). Four
load concentration buses have been identified based on the load values
and the configuration of the system. Then, these buses were selected as
the optimal locations for DG connection, while their optimal sizes were
determined by Kalman filter algorithm. Initial estimated value of each
DG size is equal to the sum of all the loads in the area of the bus. The
results showed the reduction in network power loss, which is the single
objective of this study. In another attempt, a systematic method to
optimize the location and size of multiple DGs based on load centroid
concept (based on equivalent aggregated load) and direct search has
been proposed in Ref. [77]. All loads have been summed up at first to
get the equivalent load. Then, the equivalent load was placed on each
bus, one at a time, while all of the other loads were disconnected. The
node with the best OF value after load flow has been selected as the
installation bus for the first DG with a predefined size. By repeating the
procedure, the site of the remaining DGs is being recognized, until the
total power exported from the installed DGs reaches the optimal DG
penetration. This optimal DG penetration is determined between 2–
100% of equivalent load, by searching for the best OF. The authors
believe that heuristic methods like GA and PSO or analytical methods
have their own drawbacks, such as sub-optimal value, divergence
(heuristic) or hard to extend (analytic). The test systems include both
radial and mesh system.

4.3. Physic or society inspired algorithms

To cope with uncertainties and local optimum points in DGA
problems, the intelligence search algorithms have been integrated as
heuristic solvers. There are also studies which combined these algo-
rithms with conventional optimization techniques or fuzzy set based
algorithms to solve DGA problem. A numerous number of researches
have been carried out in recent years, which concentrate on the
implementation of meta-heuristic methods for solving DGA problems.

4.3.1. Simulated Annealing (SA)
In Simulated Annealing, the problem of optimization is modeled as

an annealing process. In this approach a probability function is being
used for rejecting or accepting new solutions, to avoid being trapped in
local optimal points. The algorithm has been proposed in Ref. [141] for
the first time. This method's usage has been rising since its introduc-
tion because of its simplicity in implementation and reliable outcomes
[123]. The algorithm includes initialization, perturbation, cooling
schedule, and acceptance probability procedures. In this algorithm,
the temperature initialization and cooling play the key roles in
achieving good results. In Ref. [86] the SA has been selected to
minimize losses, emission, and contingency by optimal siting and
sizing of DG units. The main weaknesses of this algorithm are its
dependence on initial values and cooling parameters setting.

4.3.2. Harmony Search (HS)
The basic Harmony Search algorithm has been proposed by Zong

Woo Geem in 2001 [142]. The algorithm is inspired by music harmony
as a combination of sounds considered pleasing from an aesthetic point
of view. The basic optimization algorithm tries to find the fantastic
harmony representing global optimum using aesthetic standards as the
objective function which estimates the value of variables by simulating
the pitches of instruments in the course of successive practices.
Harmony search is being carried out through four main steps and
procedures comprising: 1- Initialize a Harmony Memory (HM). 2-
Improvise a new harmony from HM. 3- If the new harmony is better
than minimum harmony in HM, including the new harmony in HM,
and excluding the minimum harmony from HM. 4- If stopping criteria
are not satisfied, go to Step 2.

Nekooei and Farsangi et al. [76] have proposed a multiple-objective
planning framework, in which they have developed a method called
IMOHS, an improved multi-objective version of normal harmony
search based on the Novel Global Harmony Search (NGHS). Optimal
values of the location and sizes of multiple DGs have been found based
on Pareto front, which gives several optimal solutions for the two
objectives of voltage profile and network loss. The results have been
compared with the popular methods like GA and PSO when the multi-
objective functions have been applied with weight factors, or NSGA-II
where the two Pareto fronts have been plotted and compared. They
have considered general type DGs with fixed lagging power factor of 0.8
to be installed on 33 and 69 buses radial test systems with non-variable
load and generation.

4.3.3. Tabu Search (TS)
The Tabu Search algorithm was first proposed in 1986 by Glover

and McMillan [143], based on human memory performance, to solve
planning and arrangement of optimization problems. It can find
optimal or suboptimal efficient solution for combinatorial problems
in a reasonable time, through a procedure which does not need much
iteration. It also has the ability of passing the local optimal solutions.
The optimization procedure includes moves, neighborhood, tabu list,
aspiration, intensification, and diversification sub-procedures. In the
proposed algorithm, various types of memory consisting, short, inter-
mediateand long term memories have been considered. Network
configuration and tap positions of Voltage Regulators (VRs) as well
as the installation location, size, and operation of Distribution
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Generation Resources (DGRs) and Reactive Power Sources (RPSs) have
been identified in Ref. [97] by using TS as planning algorithm. The
constraints violating selections are considered in tabu list to avoid
future forbidden selection. Nara and Hayashi et al. [35] have intro-
duced the coordination/decomposition technique and implemented the
proposed approach along with TS for optimal DGA respecting the total
loss minimization. In the suggested method, the size identification has
been excluded in allocation procedure for the sake of simplicity. The
disadvantage of this method is that the regression model needs to be
solved by any change in the initial weight factor values to calculate the
mean squared error.

4.3.4. Imperialist Competitive Method (ICM)
The Imperialist Competitive Method as a global search method was

inspired by socio-policy and proposed in 2007 [144]. Like other
intelligent search methods, ICM uses an initial random population
with feasible values which are representing countries. The initial
population is evaluated and the best fitting countries are selected as
the imperialist countries and the remaining are assigned as the colonies
for these imperialists. On the second step after initial population
evaluation, the colonies are distributed among the imperialists accord-
ing to the imperialist countries normalized power using cost parameter
for each imperialist member. Using this way, the empires are being
constructed and on the next steps the colonies tries to get closer to their
empire. This helps to determine the total power of empire and then the
empires can compete on the basis of their total power. The competition
will result in stronger empires power gain and the weaker empires
power loss which may finally lead to weak empires destruction. Finally,
the optimal solution will be handed out by colonies movement and
weaker empires collapse.

The ICM has been employed for DGA by distribution network total
real power loss minimization in Ref. [145], while Soroudi and Ehsan
[146] have integrated ICM in DGA considering a combination of
technical and economic objectives, they have used the reduction of
total active loss and network investigation deferment as the objective
functions to maximize the distribution network operators benefits. The
ICM was implemented in Ref. [147], for recognition of size and site of
DG units for a distribution network containing the sensitive loads
working in islanded mode. The distribution network was sectionized in
this paper and each section includes both DG and sensitive loads
considering load density to reduce the enclose buses in a section. This
resulted in reasonable sizes for generation units for all sections and
reduction in network losses while increasing the reliability of islanding
mode for sensitive loads. The implementation time for this algorithm is
long compared to other algorithms; however, due to the various step
sizes, the time can be reasonable.

4.3.5. Fuzzy Set Based Algorithms (FS)
Fuzzy Set theory, as a tool for analyzing uncertain systems and their

soft modeling, was introduced in 1965 by Zadeh [148] and then it was
enormously used in power system analysis [149]. A value between zero
and one is assigned to a set as the degree of membership, using a
membership function, to model a fuzzy variable. In DGA, the used
parameters and data come from various sources and have a very wide
range of different accuracies. For example, in spite of high uncertainty
in distribution network load it is considered specified in approximately
all methods. Moreover, some level of variance can be experienced in the
case of DG cost, electricity market price, and peak power shaving.
These uncertainties may result in uncertain decision-making environ-
ment because of insufficient information, which in turn, causes the
calculations with average values validity to be unverifiable. Based on
the above said reasons, the fuzzy set method plays an important role in
DGA planning with uncertain data as input data and multi normally
conflicted goals as objectives.

Both objective function and constraints were handled by fuzzy sets
in Refs. [23,128,150,151]. Lalitha and Reddy et al. [23] have achieved

the DG Suitability Index (DGSI) by modeling the Power Loss Index
(PLI) and nodal voltage using fuzzy set method. In Ref. [128], a multi-
objective model composed of technical risk, economic risk, and
monetary cost indices were modeled by a fuzzy set theory. A fuzzy set
has been employed along with GA and goal programming to form a
multi-objective function in Ref. [150]. In Ref. [151], the authors
develop their own Adaptive Interactive Decision Making System
(AIDMS) based on the Bellman-Zadeh method to solve a multi-
objective resource allocation problem. The objective function com-
prises of power loss cost as an objective and DGs number or size
together with voltage deviation as constraints. On top of that, the load
uncertainties were modeled by a fuzzy set with respect to the load and
voltage constraints [152–154]. It is worth to indicate that, fuzzy set
method enables the researchers to implement the effect of power
system parameter uncertainty into the system model and hands out a
less compromised solution while reducing the needed iteration time
[95]. In conclusion, fuzzy set theory offers alternatives for DG size and
location selection to the distributed generation planners, however, the
main disadvantage of the fuzzy based methods is that there is no
correction step or factor and a wrong classification of variables may
result in complete incorrect answers. Fuzzy expert system with the
input of voltage profile and power losses (from load flow running
without DG) has been used to determine the optimal location of DG.
Then, the size is determined by dP dP/ =0L i and finally, the load flow was
carried out again to check the constraint of voltage.

4.4. Nature Inspired Techniques

In the following sections, a couple of natural inspired methods are
being covered and discussed such as: Ant Colony System (ACS), Bee
Colony Optimization (BCO), Cuckoo Search Optimization (CSO), and
Firefly Optimization (FFO). Moreover, there are several studies on
Hybrid Intelligent Algorithms which will be covered in the following
sections:

4.4.1. Evolutionary Algorithms (EAs)
In Evolutionary Algorithms approach, unlike the conventional

optimization algorithms, the cost function and constraints do not need
to be differentiated. According to the [139], EAs are the optimization
algorithms which are based on populations and result in the global
optimal solution in a finite evolutionary steps, considering a finite set of
potential answers. EAs such as Evolutionary Strategy (ES),
Evolutionary Programming (EP), and Genetic Algorithm (GA) are
referred to as artificial intelligence algorithms in which natural selec-
tion processes such as reproduction, recombination, crossover, and
mutation are playing the main roles. In reproduction process, the best
solution of the population is regenerated up to the finite number and
substitutes the worst solutions during selection application.
Recombination mixes the parts of a candidate solution randomly to
form a new solution. Crossover operand selects a swapping point for
two strings and exchanges the elements after the selected position in
those two strings. In mutation, the population members are randomly
selected and some random elements are varied in them. The evolu-
tionary programming algorithm was introduced in Ref. [139] for the
first time and has been utilized for power planning in Ref. [155]. EAs
after some simplifications and improvements, which were applied on
the proposed method, was employed in DGA. Single and multi-
objective functions are integrated in this approach by considering
different constraints. However, the result's accuracy and the conver-
gence of these methods are the points of concern. In Ref. [26], the
authors have used EP to solve the optimization problem of locating
multiple DGs, in a distribution network. To reduce the computational
burden, loss sensitivity is firstly analyzed on the buses to select a set of
candidate buses. Then, the fitness function consist of the energy loss
over the studied period was minimized, while a penalty factor was
implemented whenever the constraints of voltage and line loadings are
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violated. The load uncertainty and generation variance have also been
considered and modeled by using common probabilistic distribution
functions such as Beta and Weibull pdfs.

The genetic algorithm is the most recent among the aforementioned
three evolutionary methods which came after EP and ES. The capability
of GA in solving optimal DGA has been investigated in Ref. [156]. A
comparison has been carried out in Ref. [17] between their own
proposed Improved Herefoord Ranch Algorithm (IHRA) and three
other methods: Simple GA (SGA), Herefoord Ranch Algorithm (HRA),
and Improved GA (IGA). All of those methods were utilized to
minimize the active power losses through a single objective function.
Single objective function [48,157] and Multi Objective (MO) models
[42,85,89,115] are properly handled by GA, while the MO model has
been subjected to ε-constraint technique in Refs. [78,79]. The service
restoration under cold load pickup has been investigated in Ref. [125],
using GA in a MO model for DGA. The authors in Refs. [48,104,107],
have studied DG and DGA impact on reliability with GA integration.
The combination of optimal power flow and GA has also been employed
in DGA. It has been stated that, the combination of GA and OPF can
result in best connection points for a specified number of DG units
[65]. A Non-Dominated Sorting Genetic Algorithm (NSGA) along with
a multi-objective programming method is integrated to find the best
and maximum implementation configuration of Distributed Wind
Generation (DWG) with respect to voltage and thermal constraints in
Ref. [114].

The Rayleigh and Beta probability density function have been
utilized in Ref. [31] to build probabilistic generation model for wind
and solar based DGs. The load variation has been modeled by IEEE
Reliability Test System (IEEE-RTS) and then the optimization problem
has been solved by GA, with the harmonic load flow based on forward/
backward sweep method for THD calculation. Five DGs, with pre-
defined rating values and unity power factor, have been allocated on a
preselected set of candidate buses, based on voltage profile and THD
values at the buses of non-linear loads while the first bus voltage has
been set to 1 pu with the angle of 0. The premature convergence has
been checked in the middle of generation. In case of unsatisfactory, the
algorithm has been considered as being converged if the iteration
reaches to the maximum generation number. In another study [98], the
authors have taken many criteria into account to optimally allocate and
maintain multiple wind turbines in the distribution network. They have
included costs of operating, downtime, and environment penalty to be
minimized. Reliability, however, was another objective to be max-
imized. Pareto front set of solutions has been found by GA method
subjected to the maximum iteration number as its stopping criteria.
Then, the final solution could be chosen by the system planners
depending on their needs. The Weibull distribution has been employed
for wind speed distribution and the probabilistic of wind power
intermittency and load uncertainty have also been modeled by the
moment method.

Haesen and Driesen et al. [102], highlight the drawbacks of their
own proposed analytic method by offering a novel framework based on
GA and Monte Carlo (MC) simulation. They have also taken into
account the weather conditions, switching, and load growth to optimize
hybrid wind, solar, and CHP DGs site and size in the standard IEEE 34
bus radial network. The results are presented as trade-off optimal front
among four objective values to optimize the location and size of a single
DG. In Ref. [73], the authors have optimized the location and size of
DG in the network using GA, although locations of DGs were pre-
determined to several candidate bus, to maximize the savings in cost of
upgrade, energy loss, and interruption. In this study, two types of DGs
including natural gas and wind have been considered and have been
installed in 33 bus distribution network. To avoid using weighting
factors among different objectives, money value ($) has been used to
measure all of the costs and savings. Islanding mode has also been
considered in the reliability study. The uncertainty of DG units has
been considered using the probabilistic model, enabling the method to

generate (MC) simulation models to cater for all possible operating
conditions.

4.4.2. Particle Swarm Optimization (PSO)
Particle Swarm Optimization, which has been introduced by

Kennedy and Eberchart in 1995 [158], is an optimization algorithm
based on population and simulates the fish schools' or bird flocks'
social behavior. In this method, the population individuals are nomi-
nated as particles which move in multidimensional search domain on
time steps. During the search procedure, the particles' new position is
calculated according to their current location, their own best experi-
enced state (Individual Best), and the best position experienced by
their neighbors (Global Best). PSO has been utilized in different
research areas of electric systems [159,160]. The active power losses
of distribution system have been minimized by optimal allocation and
sizing of multi DG units using PSO algorithm including different load
models [161]. The harmonic analysis has been employed along with
PSO to maximize the penetration level of DGs in a 30 bus meshed
network [59]. The location and size of general type DGs have been
optimized aiming to improve the loadability of IEEE 33 and 69 bus test
distribution systems [18]. The simulation has been done to compare
the 2 objectives: active and reactive losses. It was then verified that the
correlation between reactive loss and the loadability was stronger,
therefore, it was selected. However, since variation in load and
generation is not considered, the method is hardly applicable for
renewable energy based DGs. A Multi-Objective PSO (MOPSO) has
been employed in Ref. [71], they have integrated desires of distribution
company as well as DG owner in their optimization target. Two
objective functions are optimized simultaneously and the results
appeared as Pareto-optimal solutions. Then, the best solution is chosen
based on technical and economic indices, including voltage profile
index, voltage stability index, total power loss index, not supplied
energy index, payback period, expected rate of return, and the internal
rate of return. The DG planning and viability analysis have been
optimized using PSO in Ref. [94]. They have found the unavailability of
DG in planning and determined the viability under competitive market
or bilateral contract, considering different construction and perfor-
mance costs. While an improved PSO, using penalty factor for violation
of constraints has been used in Ref. [120], more advanced version of
PSO named Dynamic Weighted Aggregation (DWA) multi-objective
PSO with gradual changing weights has been employed for optimal
DGA in Ref. [82]. The maximum number of iteration has been chosen
as the stopping criteria. TRIBE PSO for the feasible solutions recogni-
tion has been accompanied with the ordinal optimization (OO) to find
the optimal and near optimal solutions [68]. The PSO algorithm along
with the Group Search Optimization (GSO) method have been im-
plemented and compared for optimal DGA [37]. The paper has
proposed a method for optimal power output solution of the con-
trollable generators when one or two DGs fail or disconnect.

4.4.3. Ant Colony (AC)
The Ant Colony Optimization (ACO) which was introduced in the

late 90's [162], is a social insect's behavior based method, that has the
ability to solve optimization problems by simulating the insect method
in identifying the shortest way to the food from the nest [163]. The Ant
Colony System (ACS) as an extension to ACO has handed out better
results in most engineering cases [164–167]. The ACS approach has
been used as the optimal positioning method for fixed re-closer or DGA
to increase the reliability in Ref. [109], the authors have also proposed
to integrate the algorithm for simultaneous allocation of both DGs and
re-closers.

4.4.4. Artificial Bee Colony (ABC)
The Artificial Bee Colony was proposed by Dervis Karaboga in Ref.

[168], based on an idea of honey bee swarm intelligent behavior. ABC
in its general form only uses three simple parameters as control
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parameters: colony size, iteration, and the variable limitations. These
parameters need prior determination or defined by the user. This
method on its early stages was only used for numerical optimization
problems [168]. The method application has also been extended to the
constrained, unconstrained, and combinatorial problems [169–171].
The ABC method robustness, flexibility, and simplicity have been well
investigated in different studies [172,173]. ABC method is based on
bees’ position adjustment with respect to their own or their nest mate
experience in choosing food sources, these artificial bees are called
onlooker or employed bees which fly along with other bees in a
multidimensional search domain. The advantage of ABC is in its only
2 controlled parameters, which are fewer and easier to be tuned
correctly when compared to the well known GA or PSO. While the
ABC optimization has been employed for investigation of transient
performance of grid connected distributed generation [174], it has also
been implemented for optimizing the distribution network configura-
tion considering loss reduction [175]. Moreover, authors in Refs. [176]
and [45] have employed ABC for DGA concentrating on system total
real power losses as the objective function. Sohi and Shirdel et al. [177]
extended the objective function of ABC to include the line capacity
improvement in addition to the loss reduction. Moreover, the ABC has
been integrated for optimal DGA and power factor improvement to
minimize the network total real power consumption [24]. The authors
have implemented ABC algorithm to optimize location, size, and power
factor of DG. They have verified a part of their results with an
exhaustive search method and the other results have been compared
with analytical and GA method from other papers, which were similar
and slightly better. However, the variation of load and generation is not
considered in this study.

4.4.5. Cuckoo Search (CS)
The Cuckoo Search Optimization (CSO) is being inspired by the

parasitic egg laying of the cuckoo species in the other host birds nest,
and has been proposed in 2009 [178]. The CSO can be described using
the following main rules [179], first of all, every time all cuckoo lay only
one egg in a nest which is randomly selected. Secondly, the next
generation will be created using the optimal solutions (best nests with
high quality eggs). Finally, among the fixed number of host nests, the
foreign egg can be discovered by the host bird with a probability
between zero and one. After discovery, the host bird may either throw
the foreign egg away or just abandon the nest and construct a new nest.
Before the new solution generation, a Lévy procedure is carried out,
which can be more efficient if the random walk step sizes are being
adjusted according to the search space size [179]. In case of random
step size, the length is derived from Lévy distribution. For better
performance and avoiding being trapped in local extremums, a portion
of new generation should be generated randomly and far enough from
the latest best solution [178]. The CSO has been employed for a
combination of biomass and solar-thermal DGA considering loss
reduction and voltage profile improvement in Ref. [180]. It is also
implemented in Ref. [181] for voltage profile improvement, which has
been expressed by two regulation and variation indexes, and power loss
reduction for DGA.

4.4.6. Firefly Method (FFM)
The Firefly Method was inspired by the ideal model of the fireflies

flashing behavior. In general, the flashing is being done to attract other
fireflies. This method consists of three main rules as follows [182].
Firstly, fireflies in the population are of the same gender, therefore,
each of them can be attractive for others. Next, the brightness of a
firefly dedicates its attractiveness, thus, the brighter one pulls the less
bright one towards it. Thirdly, the brightness and consequently the
attractiveness fall with distance increase. In the case of equal bright-
ness for two fireflies, their motion path will be selected randomly.

Finally, the fireflies' brightness are devised or derived from the nature
of objective function search space, like fitness function in GA.

The two major challenging issues in FFM are attractiveness and
light intensity variation formulation. For the sake of simplicity, the
attractiveness of a firefly is assumed to be determined by its brightness
which in turn is derived by objective function formulation. Those issues
in FFM employment have been addressed as follows [183]: i-
Attraction: Generally the attractiveness can be defined as any single
variable descending function over the distance of two fireflies with its
maximum value at zero distance. ii- Distance: The distance is normally
formulated as the Cartesian distance from the root of the sum of the
square of all component distances. iii- Motion: The new position of
each firefly is calculated according to the current position, the attrac-
tiveness of superior firefly, and a random value between −0.5 and 0.5.

The FFM has been employed for DGA aiming to minimize the active
and reactive power losses, voltage profile improvement for various
models of loads, line current, level of short circuit, and total absorbed
apparent power of the network in Ref. [184]. Sulaiman and Mustafa
et al. [185], applied FFM to minimize the real power losses by optimal
location and size determination of DGs in distribution network.

Physical phenomena, social behavior, and nature inspired search
algorithms have some disadvantages. All of those methods are highly
affected by their parameters which are selected as their operator
constants. They may also be trapped in local optimal points in case
of wrong initial value or parameter selection. Moreover, they could
have unstable movements in finding the extremum point; hence, the
convergence of all these algorithms is questionable.

4.5. Hybrid Intelligent Algorithms

Generally, Hybrid Intelligent Algorithms (HIAs) refer to algorithms
which are a combination of different artificial intelligent methods
working in parallel or cascaded mode. There are various studies which
focused on different combination of existing meta-heuristic methods
for distributed generation allocation, including: Genetic-Tabu search
(GATS) [186], Genetic-Particle Swarm Optimization (GAPSO) [187],
Genetic-Optimal Power Flow (GAOPF) [65,188], Particle Swarm
Optimization-Optimal Power Flow (PSOOPF) [189], and Particle
Swarm Optimization- Gravitational Search Algorithm (PSOGSA) [90].

4.5.1. Genetic Algorithm-Tabu Search (GATS)
The Genetic-Tabu Search method was employed for optimal DGA in

the distribution networks in Ref. [186]. The objective function was
power losses when the harmonic power losses were included. It was
illustrated that the accuracy and convergence of GATS method were
better than GA in comparison. The application procedure is as follows:
Firstly, a set of feasible solutions is generated randomly as the initial
population. Then, the load flow calculation for each member is carried
out for fitness value recognition. In the third step, a pool population is
established by copying the best solution of the current generation and
adding new chromosomes, with the approximate size of 3–15% of the
original generation. Then, the TS algorithm comes in to randomly
select these chromosomes as the neighbors of the current generation.
Fourthly, chromosomes are selected from the pool population to create
the new generation by crossover and mutation procedures. Finally, the
algorithm returns to the second step till the convergence criterion is
satisfied.

4.5.2. Genetic Algorithm-Simulated Annealing (GASA)
The Genetic-Simulated Annealing has been employed for optimal

locating and sizing of energy storage within LV networks [60] with the
objective of minimizing the cost per power and DG unit capacity. They
have investigated the proper configuration and topologies of the
storages to solve the voltage rise problem caused by the increase in
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PV penetration. The objective function has been subjected to the over
voltage limitation on buses by a penalty factor. The Roulette Wheel
(RW) has been chosen as the mating and crossover operators while the
SA has been implemented for the mutation operator. They have
concluded that a configuration of single phase storage installed within
the customer side of the meter can solve the voltage problem in a more
efficient way than a three phase system on the street.

4.5.3. Genetic Algorithm-Particle Swarm Optimization (GAPSO)
A novel Genetic-Particle Swarm Optimization method has been

presented in Ref. [187] for optimal DGA by minimizing the power
losses and improving the voltage regulation and stability. The method
has been implemented on a radial distribution network within the
security and system operation constraints. The problem is divided into
two parts, optimal positioning which has been solved by GA and
optimal sizing which has been handled by PSO. The GA has been
selected for location identification due to its binary nature and PSO
dealt with DG size recognition. The whole procedure can be explained
as: The initial population chromosomes, containing the possible
positions of GDs are created randomly. The sizes of DGs are initialized
for PSO using reasonable random values. All chromosomes in combi-
nation with DG sizes are evaluated. The local and global best members
are recorded and used for velocity and position update. The new
chromosomes are generated using GA rules (selection, crossover, and
mutation) with respect to objective function value for the installation
sites. The old PSO population is replaced by the updated values. The
procedure stops if the convergence criterion is satisfied, otherwise,
continues by returning back to the third step.

4.5.4. Genetic Algorithm-Optimal Power Flow (GAOPF)
Harrison and Piccolo et al. [65] have illustrated the robustness of

Genetic-Optimal Power Flow for determining the installation sites of
specified number of DGs. By using this method, the common issue of
capacity identification could be solved because of OPF integration. This
method enables network operators to select the most suitable sites and
sizes in DGA among a huge number of available options. They first
initialized random population for GA as installation sites for DGs and
then the OPF identified the optimal size of DGs for the current
positions. Then, the fitness function was evaluated for all GA chromo-
somes to find the most suitable combination for a predefined number
of DGs. In Ref. [188], GA has been utilized for optimal positioning
again and the OPF has been implemented for minimizing the opera-
tion, maintenance, and network upgrade costs along with cost for load
growth causing losses. They have also considered the year dependency
in their calculations which create the dynamic aspect of their proposed
algorithm. The load curve for the duration of one year in combination
with the customer load changes, have been modeled as the impact of
load variation in the network.

4.5.5. Particle Swarm Optimization-Optimal Power Flow (PSOOPF)
The Particle Swarm Optimization-Optimal Power Flow by a combi-

nation of discritized PSO and OPF has been applied in Ref. [189] for
optimal DGA within a distribution network for site and size recognition
of a specified number of DGs. In this algorithm, the objective function
has been defined as simultaneous minimization of losses and max-
imization of DG capacity. The discrete particles have been initialized as
DG installation locations and then the OPF procedure identified the
optimal size for DG units considering the imposed constraints for
distribution network. The results have illustrated the reliability of the
proposed method for optimal DGA in comparison to the pure genetic
algorithm. Saif and Pandi et al. [58] have passed a set of system
configuration to PSO on outer layer. The Dynamic Optimal Power Flow
(DOPF) has been executed to evaluate the fitness function for each
iteration. They have examined their approach on a simplified network

from the UK generic rural distribution network with 16 bus and voltage
level of 33 kV.

4.5.6. Particle Swarm Optimization-Gravitational Search Algorithm
(PSOGSA)

Various objectives including power loss, voltage profile, line load-
ing, and environmental impact of generation have been addressed in
Ref. [90]. The optimization has been solved by a hybrid method
combining Particle Swarm Optimization and Gravitational Search
Algorithm, utilizes the advantages of both algorithms such as social
thinking Global Optimality from PSO, and local search from GSA.
Population has been initialized at first with the given population
number. Then, the fitness function has been evaluated for each
individual, and if constraints have been violated, a penalty factor of
maximum value would be added to the function. The formulas of
gravitational force or velocity have been utilized in parameter calcula-
tion and particle position update. The search procedure stopped when
the maximum generation reaches 150 or the tolerance of 10−6 was met.

Different types of GDs considering their generations have been
studied in this paper such as: active power generators, active and
reactive generators, active generators and reactive absorbers, and a
mixture of all the three types. The load flow analysis was done on 69
buses system using forward/backward sweep load flow algorithm and
the loads have been modeled in 2 scenarios: invariant and variant.
Then, the location and size of multiple DGs have been optimized while
only the types have been specified as above. However, the generation
variation of DGs has not been taken into account.

4.5.7. Particle Swarm Optimization-Shuffled Frog Leaping (PSOSFL)
Hybrid of Particle Swarm Optimization and Shuffled Frog-Leaping

algorithms has been employed in Ref. [84], which take the advantages
of both methods. Since SFL divides frogs into several memplexes and
search in different parts of solution space, it can rectify the drawback of
PSO, which is said to be a premature convergence, where the particles
tend to fly to the best solution which might lead to local optimum.
Fixed load and generation are considered in this study and the network
analysis has been carried out by DIgSILENT. A multi-objective
comprising minimization of power losses, voltage profile, and transient
stability improvement has been considered. In case of constraints
violation, a big value penalty term has been added to the objective
function.

While each individual in the population contains the info of location
and size of all DGs, the convergence criterion is pre-specified to the
max number of iteration. After this has been satisfied, the last contents
are considered as Pareto solutions. One best compromised solution is
chosen by a decision-maker, based on a normalized membership
function. The transient stability is determined by simulating different
contingencies of various fault location (3 phase short circuit), and
Critical Clearing Time (CCT) is measured when first DG becomes
unstable (loss of synchronism). The authors have highlighted the
advantages of DIgSILENT in dynamic modeling over MATLAB.

4.5.8. Fuzzy based hybrid algorithms
There are a few hybrid algorithms implemented for DGA using a

combination of Fuzzy Set along with one of the other artificial
intelligent algorithms. For instance Genetic-Fuzzy (GAFZ) has been
presented in Refs. [100,128,150] and Tabu-Fuzzy (TSFZ) has been
reported in Ref. [153].

The Genetic-Fuzzy algorithm has been proposed as a solution for
DGA in the distribution systems in Ref. [150]. They have composed the
objective function based on the cost of distribution system for power
losses, while the size or the number of DG units and the bus voltage
deviations have been considered as the constraints. In common
employment of fuzzy algorithm, the composed objective function and
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constraints need to be transformed to an equivalent multi-objective
model. In the proposed hybrid method, the imprecise information for
the fuzzy algorithm and multi objectives have been evaluated directly
using GA, escaping any additional nonlinear to linear transformation.
Another multi-objective model considering technical and economic
risks together with planning, operation, and monetary cost index has
been proposed in Ref. [128]. The load and electricity prices and risks
have been modeled by fuzzy algorithm, while a NSGA has been
integrated for solving the MO model. The results demonstrated the
robustness of the proposed algorithm for risk management and
distributed generation planning (DGP) in distribution networks. The
GAFZ combination has also been applied in Ref. [100], the authors
have selected economic profit maximizing and loading margin of the
system as objectives and used fuzzy set to combine these objectives to
form a single objective. Finally, the single objective has been optimized
by a genetic algorithm.

Lalitha and Reddy et al. [23] have optimally placed and sized DGs
through a two-step algorithm. In the first step, they optimized the DG
installation point using a fuzzy approach, then, in the second step, they
used PSO to find the optimal size of DG which can imply the most
reduction on the system power losses. Tabu search has been combined
with a fuzzy set algorithm in Ref. [153] for optimal DGP. The authors
have employed fuzzy method to model multi fuzzy objectives such as
reliability, economic cost, and network robustness. Fuzzy set has been
implemented to form a non-dominated multi-objective model from the
aforementioned objectives for simultaneous optimization. The resulted
model has been optimized by TS based algorithm. The model deter-
mines the optimal expansion size and sites of feeders and substations
for the future, which were larger than what have been recognized in
other literatures. The optimal reserve feeder including the site and size
can also be determined using this model. The recognized reserve feeder
can improve the network reliability for a dedicated robustness level at a
minimum cost. Another two-step optimization has been employed in
Ref. [69]. The authors have integrated a multi-objective Bee
Optimization (MBO) to optimize the location and size of a grid
connected solar farm. Then, they implement Fuzzy C-Means (FCM),
a data clustering technique, to reduce the number of Pareto sets. A

binary PSO has been implemented to find the Pareto optimal solutions
for micro turbine, wind turbine, and gas turbine with pre-specified
sizes. Then, the fuzzy satisfying method selects the optimal solution for
the location, size, and investments timing of multiple DGs, depending
on the planners’ desires [103].

5. Comparison of optimization algorithms

All reviewed literatures are summarized in Table 1 and Table 2 with
regard to their employed optimization algorithms. Moreover, the
number of DGs, considered constraints, selected objectives for optimi-
zation, and the control variables are also presented in the same tables.
Fig. 4 focuses on base and pure optimization algorithms which have
been integrated in the researches. On the other hand, Table 2 covers
the combined methods, including the combination of simple algo-
rithms or more advanced hybrid intelligent algorithms.

The advantages and disadvantages of the employed methods are
also concluded in Fig. 4. The pros and cons of the employed algorithms
are summarized under three main categories: the classic algorithms,
basic intelligent algorithms, and hybrid intelligent algorithms.

6. Conclusion

It can be stated that DG installation in power networks changes the
network characteristics. There are a lot of methods employed in DGA
due to their objectives operation constraints. Moreover, the studies on
DGA can also be classified with respect to their employed optimization
algorithms. A fitness function comprises of a combination of multi
objectives and weight factors, is examined in the literatures. To form a
single value objective function, weight factors are the most proper
technique. However, the analytic methods combined with simple or
exhaustive search can always result in an accurate solution, but they
are not applicable for large networks. Due to the explained disadvan-
tages of nature inspired optimization algorithms, a hybrid optimization
algorithm seems to be more suitable for DGA, especially when renew-
able resources are also included.

Fig. 4. Advantages and disadvantages of employed optimization algorithms.
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